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Effect of Modal Dispersion on the Optimization of the Reflection CoefTicient of
Corrugated Planar Optical Waveguides
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Abstract:

The refiection characteristics of corrugated planar waveguides. satislving Bragg condition. arc
investigated. A new eigenvalue criterion for optimum reflection cocfTicient is derived analytically taking into

account the modal dispersion . This critcrion must be met before the satisfaction of the well-known Bragg

condition. ‘A translation-matrix operator formalism (which is the corc of Floquet's theory for periodic
waveguides) is used in the analysis.

Over the past three decades and since the pioncering works of Kogelnik |1]. Yariv [ 2] . Wang [3] . Yariv [4] and Yeh
[5] 1n the theory of distribuled feedback waveguides and lasers. experimental and theoretical researchcs on guided wave Bragg
gratings for laser diodes. quantum well lasers, optical amplification, soliton generation and propagation. optical bistability.
dense wavelength division multiplexing (DWDM) and narrow-band high-reflectance filters arc still continuing [6-15]. The
penodic modulation of the refractive index of a planar optical waveguide (or fiber) acts like a selective mirror for the
waveiengths (hat satisfy the Bragg condition. In other words, that periodic modulation forms a Bragg grating whose period and
lengih. together with the strength of the modulation of the refractive index: determine the optical characteristics of the grating.
An example of periodic modulation of the refractive index is the planar corrugated waveguide shown in Fig, 1. where
the periodicity is limited to a cross scction lying between the planes x=d, and x=d, . The corrugations cxtend from Z=0 to Z=L.
That 1s. the corrugated section is a succession of short-length guides with varying thickness ( variation between d; and d; ).
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Figure 1~ A corrugated distributed feedback waveguide.
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guided mode which propagates in that w
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ave impedance ( EJ/Hy) varics accordingly. as well ais the hicld distnibution
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the dircction of propagation). The w
in the transverse dircction, The variation in wave impedance is the

characteristics of the corrugaled waveguide as poinied out by Yariv [4] . Wang |3] . and Hauss [16] Of coursc

the transverse ficld distribution causcs somc power loss | 17] of thc guided power via radiation
¢ . ic in x>dy and the substrate ( ¥<0). However, by a rigorous mode matching technique (i.c.
arcuse | 17] has shown that the

the variation in

in the superstrat
faking into account (he cffect of transverse misnwich m the mede structure ). M
reflection cocficicnt of a guided mode al a sicp discontinuity in a planar waveguide is dominated by the

difference betwecn the mode propagation constants.
In this paper. we used the (ranslation-matrix operator formalism [4.5]: which is the foundation of

Floquet’s theory for wave propagation in periodic media. to show that the refection cocfTicient of onc period.

i.c. a unit-cell, can be optimized when a certain cigenvaluc criterion is satisficd and consequently (he overall
reflection coefTicient of the corrugated section of the waveguide is optimized. This is achicved by a proper
choice of the dispersion characienistics (before the satisfaction of the well known Bragg condition!) of the thick

and thin scctions of the unit-cell shown in Fig. 2.

11. Theoretical _Analysis:

The problem of guided wave propagation in periodic structures can be handicd by two man approaches:
coupled-modes| 1.2] and Floguet's theory {4.5] ( which is bascd on the translation-matrix formalism ) . Here we
adopt the translation matrix fornutlism becausc, as will be shiown later, il is tnore exact than the coupled-modes
formalism and can handlc a wide varicty of periodic structures [4.5]. Fig. 2. shows a unil cell of the corrugated
zone. TE and TM modes can be treated by the same method, which will be outlined hercafer. bul for brevity
we consider TE modes ouly. The cleetric ficlds of the fundamental TE modes in the thin and thick scctions

(which will be assumed singlc-mode) have the form | 18]

Evi(x.z.t) = &(x) exp{j( Biz — ot)} (1)
Eya(x,z.t) = é(x) exp{j( B2z - ot)} (1-b)
p - i T
Ad=( dy-d3)
X= dy-----1 - S——
X=0 ___. i z .
1 E ty :

Figure 2 - A unit-cell of a cormugated DFB Waveguide .

106



Minufiya Journal of Electronic Engineering Research MJEER ,Vol. 14, No.1&2, Januery - July.2004

Where "j" is the imaginary unily and &(x) and #(x) are the transverse distributions of the mode fields in the
respective sections of the unit-cell. The time-dependence exp(-jot) will be dropped in what follows. The
propagation constants are related to the free space wavelength A by : 1= kone = (2n/&)n,, where k, is the free-

space wavenumber. The mode effective index n,, in the thick section is the solution of the following eigenvalue

equation [17]:

kods (n’r —n’e)"2=tan’ {(n’, =" Y(n’r —n’)} "~tan™ {(n’ -0’ J(n'—n'e)} 4= mn (-a)

While the mode effective index n.; =B/ k, is the solution of the following eigenvalue equation:

ked; (n'—nlg)"~tan™ {(n* -’ )(n’ ")} P—tan™ {(n’ Y0’ ')} P = mr (2-b)

The integer " m" is the order of the mode ( for the fundamental mode m=0). The two Eqns. (1-a) and (1-b)
reflect the well known fact [16,18 and 19] that a mode can be viewed as an inhomogeneous plane wave
propagating in a uniform homogeneous medium with refractive index equals to the mode effective index. And
hence, the alternating thick and thin sections of the corrugated zone of the waveguide is regarded as a stack of

multilayer dielectric media [16,5 and 6] with alternating refractive indices nei, Rz, . . . . and so on, as shown in

Fig. 3-a. If N is the total number of periods, then L=NA .
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Figure 3 - (a) A stack of dielectric layers equivalent to the corrugated section of a DFB waveguide.
(b) Forward and backward waves in two consecutive cells in the dielectric stack.

Within any cell (say the n"-cell) there will be a forward wave (propagating towards positive Z) and backward

wave (propagating towards negative Z), the Z-dependence of these waves is not of the form exp(xjBz) as in

Egos (1-a) and (1-b); but will be [4-5] a,exp(jp,z) for the forward wave within the thick section

( thickness 1, and denoted by t;-layer) of the n"-cell and byexp(~jB12) for the backward wave. Within the thin

secSon (thickness 1; and denoted by t;-layer) of the same n"-cell, the forward and backward waves havea Z-

@zpendence similar to the previous ones, namely: c,exp(jfi;z) and d.exp(=jpz) for the forward and backward
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where the clements 1;; of the translation matrix are as toilows |5

Tuu = exp(=iPuti) | cos Bata ~ { G sinpata 2) [(B/ B1) + (B B2) ]} (12)
T=exp(<iBit) { (< sinata /2) [ ( B/ B1)— (Bi/ B2 ] } (13)
Ty =-Tiz= exp(=iBitr) {  sinBat /2) [ (Bo/ B1)— (Bi/B2)] } (14)
Tn= exp(jﬂm){cos Bats + { (j sinBatz 12) [ ( B2/ Br) + (Bi/ B2) ] } (15)

It is worthy to note that in the coupled-modes formalism the reflections at the discrete interfaces
between the dielectric layers are assumed small, and this allows the replacement of the difference Eqns. (5) to
(8) (which are in fact the boundary conditions) by two coupled differential equations relating the rate of change
( in the Z-direction) of the two oppositely propagating modes (i.e. in the forward and backward directions).
This is the main difference between the two formalisms (coupled-modes and Floquet's theory which is based on
the translation matrix method) . The reflection coefficient R, of one unit cell is the key element in any feedback
structure. A straightforward calculation of R, is possible from the matrix relation given in Eqn. (11) when we
consider a corrugation formed from one cell, that is L=NA=A and N=1, so we have three wave components
a,, b, and a, (c.f. Fig. 3-a) since the interface Z=A recedes to infinity for a corrugation of one period [5] and

hence the boundary conditions at Z=w implies b;= 0, so we immediately obtain:

G sinBat2 22) [ ( B2/ B1) = ( B/ B2) ]
Ry = (byao)|=(Ta/Tny) = - (16)
cos Bty —{(j sinPata /2)[ ( B2/ B1) + (By/ B2)]}

b|= 0

where a, , b, and b, are shown in Fig. 3-a. If the optical thickness of the t;-layer is equal to a quarter
wavelength, i.e. it satisfies the Bragg condition, then the reflection coefficient of that layer is maximum when :

Batz = n2 (17-a)
Similarly for the t,-layer:

Bity=w/2 (17-b)
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Of course the matrix that relates c,.; and dy., to ¢, and d, is different from that one given by Eqn. (11}, however

it is similar in form [5] . For a diclectric multilayer when the conditions for maximum reflection coefficient (17-

a) and (17-b) are satisfied ( i.e. sinf;t; =1 and cos B;t; = 0) the reflection coefficient R, of a unit-cell,

according to (16), will be given by :

[ (B B2) = ( B2/ Bi) ] Bi* - B’ ne’ - ne (18)

Ru= = ==
[(B/ B+ (BB ] B2 + B e’ +ng

Considering the fact that the mode effective indices n,; and n., depend on the wavelength A via the eigenvalue

Egns. (2-a) and (2-b), the maximum value of R, Eqn. (18) can be optimized when:

(dR,/dA) = [ne2” nes (dnei/dh) ] — [ner? nea (dnea/dd) | _ 0 ii#h
[ nﬂz + ndz ]2
which is possible when :
[ (dnei/dR) / (dnga/dX) ] = nei/ne (20)

The condition given by Eqn. (20) is, to our knowledge, the first published criterion for optimization of
the reflection coefficient of the unit-cell of a distributed feedback waveguide operating at the Bragg
wavelength. That condition is in fact a two-fold eigenvalue criterion since it requires the solution of the
wanscendental equations (2-a) and (2-b) to find n.; and n., and then search for the wavelength at which the ratio
tetween the slopes of the dispersion curves ng(A) and na(A) is equal to the ratio between the effective indices

themselves. The optimization procedure will be outlined and checked numerically in the following section.

Ewidently, there is no closed-form analytic solution for (20) since this requires the solution of
Tmmscencental equations as stated previously. Only a numerical solution is possible. However, we can discuss
= owerail character of the solution and the optimization process by intuitive reasoning (which will be verified
Jme o) - e guided mode suffers from reflections when it encounters the steps forming the corrugations
| Bl $he sep-up and the step-down discontinuities in the corrugated zone of the waveguide). A rough

==meree of $e reflection coefficient at a step-like discontinuity is the plane-wave reflection coefficient
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( Bi- B2 Y( By+ B2 ). Furthermore, if the difference in the refractive indices between the film and the substrate is
small, i.e. ( neng ¥og is much less than 1, then the reflection coefficient which can be written as ( - B2 /2B )
increases as the difference ( B~ Bz ) increases ( where P is the average value of the propagation constants [
and _!31)- This means that when the two small sections of the waveguide forming the unit-cell have quite
different characteristics ( thickness), that is one mode (for example in the thick section d,) is far from cutoff
while the other one ( in the thin section d; ) is near the cutoff at the wavelength of interest A, . Accordingly, the
optimization process can be done as follows: fix the values of n., ns, n, and A, , then choose d, ( in principle
arbitrary).One may choose it to satisfy certain requirement, for example for single-mode operation at the
wavelength A, , the cutoff wavelength of the first-order mode, ie. m=1 in (2-a), must be less than the
wavelength of A, ( say 60% X, ) to ensure the single-mode operation ( and far from cutoff) of the thick
waveguide, i.e. :

[n + tan™{( n% - n%)l( n%— %)}
g4 = @

(2n/ 0.6h,) [0 — 0’9} 7]

Then, search for the thickness d, that satisfies the optimization condition (20) at the wavelength of interest Ao
by varying the ratio g=dz/d, ( i.e. varying the thickness d, ) at small steps Aq and for each value of "q" we
solve the eigenvalue Eqns. (2-a) and (2-b) numerically in a wavelength range around A, . Then calculate
numerically the slopes of the dispersion curves S;=d[n.,(\)/dA and S,= d[n(A))/dA and check for the
optimization condition (20) until it is satisfied at that wavelength A,. Once the ratio “g” that meets the
requirements in (20) is found, the widths t, and t, of the thick and thin sections of the corrugations can be
calculated according to Bragg conditions (17-a) and (17-b). To check numerically the existence of an optimum

value for R,, we considered a waveguide having n=1, n=3.61, n,=3.6, the wavelength of interest &, = 1.5um

and d,= 2.47um ( according to (21)).
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Figure 4 - Variations of the unit cell refiection coefficient R, against the variations
of the wavelength A for different vaiues of the parameter g=(d,/d,) around the
wavelength of interest A, = 1.5um .

Fig. 4 shows that R, has a peak value when g=0.75 which corresponds to d,= 1.85um. The location of
e peak of R, shifts towards the longer wavelengths as "g” increases beyond the value 0.75; and the magnitude
of that peak decreases as "q" increases since the amount of reflections decreases as the dimensions of the two
sections forming the unit-cell become close to each other ( i.e. "g" approaches unity when d; approaches d; ).
To verify the condition (20), we solve numerically (for g=0.75) the eigenvalue Egns. (2-a) and (2-b), to find n

=d n., and calcuiate the slopes S,

" 0.008 - 3.61
=nd S, of the dispersion curves n.(A) 0.007 o E
= n.(3). The reflection coefficient & g 0.006 ' ®
. o5 £ 0005 - 3606 £ 3
R, and the difference in effective n:.' g 0.004 £ :
mfcss An= ngy(A) - na(A) are also a g’ 0.003 - 3.604 ,;_ F"
. = g 0.002 i kT
alewtised and plotted in figure 5. » 0.001 3.602 ﬁ
0 3.6

0 06, 1 156 2 2 5
Wavelength A in
Figure 5 - Dispersion curves n,(1) and n(1) of lhe ’r'undamenml modes in
the two sections of a unit-cell. The slopes S, and S; of the dispersion

curves intersect at the desired wavelength A,;=1.5um. The point of optimum R,
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To discuss conveniently the results, we plotted the magnitudes of the slopes instcad of the slopes S,
and S, themselves (which are negatives since n,, and n.; decrease as the wavelength A increases).
A careful investigation of Fig. 5 shows that:

l-. The optimum value of the reflection coefTicient R, occurs "almost” at the point of intersection of the
slopes S; and S;, i.e. when 5,=8; ( or alternatively when $,/S, = 1) . This is expected, because according
to (20), Si/S; is equal to the ratio (n.i/n.) which is "nearly” unity ( since An. = n.— ng = 0.002 at
A.=1.5um and hence the difference between (n.i/n;) and unity is (n./ng)=1= (Andng )< 0.002, that is
(Nei/ngg) = 1.

2- The optimum value of R, occurs when the difference in the effective indices An, is maximum ( as
discussed "intuitively" at the beginning of this section). This is confirmed since the peaks of An, and R,
occur at the same wavelength (1.5um ). To get a wider look on the behavior of the above mentioned
quantities, we performed the calculations in a wavelength range beyond the single-mode limit of the thick
waveguide,i.e. shorter than 0.6 A, = 0.9um, while the long wavelength limit is determined by the cutoff
wavelength of the fundamental mode A, (i.e. m=0 and n=n,, in eq.(2-a)) of the thick waveguide section
of the corrugations, which is given by :

Ao = 21d) [ nf — 0,2 ]2/ [ tan™ {( 0 - 0’ n’e—n"9)}'? ] (22)

To emphasize the condition (20) we plotted separately in Fig. 6 the reflection coefTicient Ry and the ratio

S/F ( i.e. equ.(20) itself) where $=5,/S, and F=n.,/ne;. Obviously, R, attains its peak value when S/F=1.
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Fig. 6- Variations of the unit-cell reflection coefficient R, against the variations of A. The peak of R,

occurs when S/F = 1, in agreement with the optimization condition (20).
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1V, Conclusions :

In this paper we introduced 2 mew comdision for optimization of the reflection coefficient of DFB waveguides. It is

shown that the optimization of the reflection cosfficient of 2 unit-cell of a distributed feedback waveguide is possible. The
s=oslation matrix formalism, which is the backbeme of Floguet's theory for wave propagation in periodic media, is used to
sedate the electromagnetic field in one ceil with Sas ame i the next neighbouring cell.
The optimization condition is a two-fold eigenvales sgestion, and hence it implies a numerical solution. We discussed the
g=meral character of the solution and explained the optamization procedure which has been verified numerically. That
condition must be met "before” the satisfaction of Brags comdation ( quarter-wave thickness ) since the lengths of the
sections of the corrugated waveguide ( t, and t; ) are determsmed once She propagation constants are known. The method is
sccarate and can be used for the optimization, analysis. design 2nd sssessment of many distributed feedback-based devices
and components for optical communications such as: corrugates wawegsides for laser diodes, optical amplifiers, narrow-band
Slers and dense waveleneth division multiolexers ( DWTIR
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